Tetrahedron Letters,Vol.25,No.50,pp 5813-5816,1984 0040-4039/84 \$3.00 + .00 Printed in Great Britain ©1984 Pergamon Press Ltd.

> EXAMINATION OF THE RING-CHAIN ISOMERISM OF 2-HYDROXY-CHROMANONES WITH ¹H NMR SPECTROSCOPY

> > János Borbély and Vince Szabó

Department of Applied Chemistry, Kossuth Lajos University, H-4010 Debrecen, Hungary

Summary. In the cyclic derivatives (1) the hydroxyl group is of pseudo-axial orientation $(1: \alpha$ -anomer) and no equatorial form $(1: \beta$ -anomer) has been detected. The ring-opened compound exits in keto-enol equilibrium $(2 \Rightarrow 3)$ dependent of the R-substituent.

The preparation of 2-hydroxychromanones from 2-hydroxyacetophenone by <u>Claisen</u> condensation has been reported and the product has been declared¹ as ω -formylacetophenone (2a) of β -diketo structure. In previous papers several authors suggested² this chainform but others took a stand on the cyclic structure³ such as in the case of the 2-trifluoromethyl derivatives⁴. In a recent paper the ring-cleavage process of 2-carbethoxy-2-hydroxy--chromanone was described⁵.

In a previous paper⁶ we have investigated the structure of 2-hydroxychromanones substituted at the aromatic ring and at C-3. These compounds were confirmed as cyclic derivatives bearing pseudo-axially oriented hydroxyl function at low temperature (O- -40 $^{\circ}$ C).

In the present communication we report on the stereochemistry of analogues substituted at the aromatic ring but no substituent at C-3 $(\underline{la}-\underline{lg})$ and the phenomenon of the opening of the cyclic structure.

When a solution of 2-hydroxychromanone (<u>la</u>) in CDC1₃ was investigated immediately after dissolution spectral band characteristic of the cyclic structure could be assigned at room temperature, as well. The H-3 atoms are nonequivalent (<u>A</u> and <u>B</u> protons) and are in coupling both with H-2 and C₂-OH. As shown by the coupling constants (summarized in Table 1 : $J_{3a',3e'}=J_{AB}$; $J_{3a',2e'}=J_{AX}$; $J_{3e',2e'}=J_{BX}$; $J_{3a',OH}={}^{4}J_{H,OH}$) the C₂-OH group is pseudo - axially oriented. No pseudo-axial H-2 atom was observed indicately that the β -anomer (<u>7</u>) was not produced.

The heterocyclic ring is depicted in the so-called "sofa" conformation as suggested by Philbin and Wheeler 7 .

When the solution of <u>la</u> was investigated after 20 minutes novel bands, assignable to the ring-opened <u>2a</u> were observed in the spectrum. The chemical shifts δ =4.07 <u>d</u>, δ =9.95 <u>t</u> and δ =11.88 <u>s</u> could be assigned to the methylene group, the aldehyde proton and to the phenolic OH group being in hydrogen bonding, respectively.

After standing for a longer period forms $\frac{2}{2}$ are enolized and novel bands characteristic of structure $\frac{3}{2}$ could be observed. In the case of 3a

the shift $\delta=6.23$ <u>d</u> could be assigned to H_a whereas the shift $\delta=12.09$ <u>s</u> and $\delta=13.9$ <u>s</u> corresponded to the phenolic and enolic hydroxyl group, respectively (see Fig.1.).

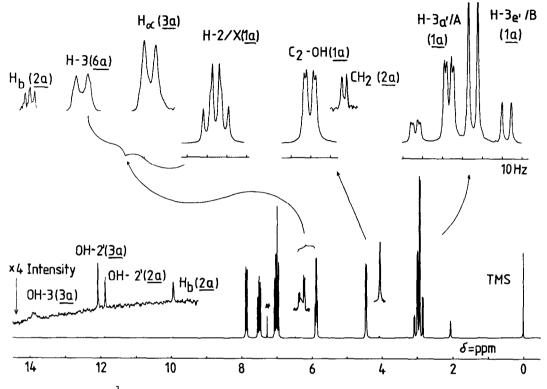
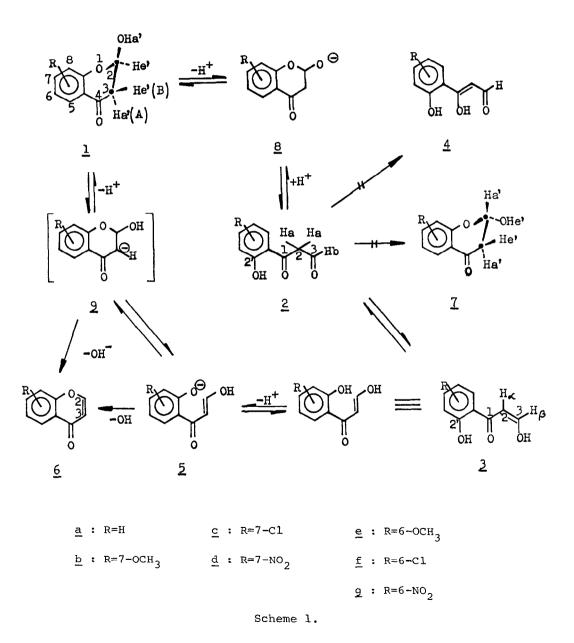


Fig.1. ¹H NMR spectrum of <u>la</u> in CDCl₃ after dissolving with 2 hrs


The formation of the other possible enolic form $(\underline{4})$ was not observed. Starting from pure $\underline{1}$ an additional dehydration process resulting in the chromone derivative ($\underline{6}$) always proceeds in solution. Thus the formation of this compound may be accomplished, for example in chloroform, by two alternatives:

- (i) the opening of the ring can proceed by an initial dissociation of the C₂-OH - as described⁸ for example in the case of hexoses - followed by the formation of the chromone derivative (<u>6</u>) <u>via</u> intramolecular transformation of the enol forms (<u>3</u>) or (<u>5</u>) of the resulting β -dicarbonyl derivative: <u>1</u> = <u>8</u> = <u>2</u> = <u>3</u> = <u>5</u> - <u>6</u>.
- (ii) the chromone forms from the cyclic compound <u>via</u> carbanion <u>9</u>, as supposed earlier in the case of 2-hydroxyisoflavanones⁹:
 1 = 9 (= 5) 6 (see Scheme 1.).

According to our NMR measurements it is supposed that the establishment of the conversion by alternatives (i) and (ii) is dependent on the nature of the R substituent and in the case of a given compound the two pathways may be even simultaneously effective.

In the case of electron donor R substituent the enolization of the resulting β -diketo form (2) is slow. With electron withdrawing group the concentration of 2 is low, it is stabilized in the enol form (3), and also, the rate of conversion into chromone (6) is increased.

The contribution of the acyclic form does not exceed 3-28 %, and instead, the formation of chromone – being the most stable in the system – is observed and finally this latter compound appears as the exclusive product.

Compound	Chemical shifts ($\delta = ppm$)				Coupling constant (J=Hz)				mol	
	H-2 or H-b H-3		or	H−α/a	J _{AB}	J _{AX}	J _{BX}	$J^{\alpha}_{a,b}^{\beta}$	1 ^h	200 ^h
<u>la</u>	5.88 <u>m</u>	3.01 <u>m</u>	2.89	m	16.8	4.1	4.0		90	89
<u>2a</u>		9.95 <u>t</u>		4.07 <u>d</u>				2.6	7	2
<u>3a</u>				6.23 <u>d</u>				6.2	3	9
<u>lb</u>	5.86 <u>m</u>	2.99 <u>m</u>	2.84	<u>m</u>	16.6	5.1	3.2		85	85
<u>2b</u>		9.90 <u>t</u>		3.99 <u>d</u>				2.5	2	1
<u>3b</u>				6.10 <u>d</u>				5.8	13	14
<u>lc</u>	5.92 <u>m</u>	3.01 <u>m</u>	2.90	<u>m</u>	16.8	4.3	3.5		85	85
<u>2c</u>		9.95 <u>t</u>		4.05 <u>d</u>				2.6	2	1
<u>3c</u>				6.17 <u>d</u>				5.9	13	14
<u>1d</u>	6.00 <u>m</u>	3.10 <u>m</u>	3.00	<u>m</u>	17.0	3.7	3.4		90	80
<u>3đ</u>				6.25 <u>d</u>				4.2	10	20
<u>le</u>	5.85 <u>m</u>	3.01 <u>m</u>	2.88	<u>m</u>	16.9	4.8	3.3		98	97
<u>3e</u>				6.18 <u>d</u>				5.8	2	3
<u>lf</u>	6.10 <u>m</u>	3.21 <u>m</u>	3.09	m	16.9	4.5	3.1		93	85
<u>3f</u>		_		6.30 <u>d</u>				5.6	7	15
	6.08 <u>m</u>	3.09 <u>m</u>	3.01	<u>m</u>	16.8	3.8	3.2		90	72
<u>3g</u>		_		6.35 <u>d</u>				5.8	10	28

Table 1. ¹H NMR data of 1,2 and 3 compounds^x, ^y

*: Solvent: CDCl₃; y:2d,2e,2f and 2g undetectable because of fast enolization; o: in enolic form; u: in β-diketo forms; d: doublet; t: triplet; m: multiplet

REFERENCES:

- 1. A. Schönberg and A. Sina, J. Am. Chem. Soc., 72, 3396 (1950).
- 2. F. Eiden and W. Luft, Arch. Pharm., <u>306</u>, 634 (1973).
 - K. Kostka and J. Nawrot, Roczniki Chem., 51, 1045 (1977).
 - W. Basinsky and Z. Jerzmanowska, Polish J. Chem., 53, 229 (1979).
 - F. Eiden and G. Rademacher, Arch. Pharm., 316, 34 (1983).
- 3. F. M. Dean and S. J. Murray, J. Chem. Soc. Perkin Trans. I., <u>1975</u> 1706 .
- V. K. Ahluwalia and C. Prakash, Indian J. Chem., <u>15B</u>. 331 (1977).
- 4. E. Morera and G. Ortar, Tetrahedron Lett., <u>1981</u>, 1273.
- 5. P. S. Bevan and G. P. Ellis, J. Chem. Soc., Perkin Trans. I. <u>1983</u>, 1705.
- 6. J. Borbély, V. Szabó and P. Sohár, Tetrahedron, 37, 2307 (1981).
- 7. E. Philbin and T. S. Wheeler, Proc. Chem. Soc., 1958, 167.
- 8. G. de Wit, A. P. G. Kieboom and H. van Bekkum, Recueil, 1979, 355.
- 9. V. Szabó and M. Zsuga, Acta Chim. Acad. Sci. Hung., <u>85</u>, 191 (1975).

(Received in UK 26 September 1984)